Логарифмическая бумага, специальным образом разграфленная бумага; обычно изготовляется типографским способом. Она строится следующим образом (рис. 1): на каждой из осей прямоугольной системы координат откладываются десятичные логарифмы чисел u (на оси абсцисс) и v (на оси ординат); затем через найденные точки (u, v) проводятся прямые, параллельные осям. Наряду с Л. б. применяется полулогарифмическая бумага (рис. 2): на одной из осей прямоугольной системы координат откладываются числа u а на другой — десятичные логарифмы чисел v. Л. б. и полулогарифмическая бумага служат для вычерчивания на них графиков функций, которые здесь могут принимать более простую и наглядную форму и в ряде случаев выпрямляются. На Л. б. прямыми линиями изображаются функции, заданные уравнениями вида v = aub, где а и b — постоянные коэффициенты, т. к. такие уравнения после логарифмирования и перехода к системе координат х = lgu, у = lgv приводятся к виду:

  у = bx + lga.

  Аналогично на полулогарифмической бумаге прямыми линиями изображаются функции, заданные уравнениями вида v = abu. Это свойство Л. б. и полулогарифмической бумаги находит применение при отыскании аналитической формы эмпирических зависимостей. Если, например, ряд точек с координатами ui, vi, где ui — значения аргумента и, при которых из опыта получены значения vi функции v, нанесённых на Л. б., с достаточной точностью располагается на прямой, то прямую принимают за график функции v = f(u), которую, следовательно, можно записать в виде v = aub. Для случая полулогарифмич. бумаги зависимость будет иметь вид v = abu. Коэффициенты а и b находятся по чертежу.

 


Рис. 2. Полулогарифмическая бумага.


Рис. 1. Логарифмическая бумага.