Макромолекула, буквально — большая молекула, молекула полимера; построена по принципу повторения идентичных (у М. гомополимера) или различных (у М. сополимера) структурных единиц — мономерных (повторяющихся) звеньев. В линейных М. эти звенья соединены ковалентно в цепочку, длина которой характеризуется степенью полимеризации (то есть числом повторяющихся звеньев) или молекулярной массой. Совокупность М. данного полимера, в отличие от молекул низкомолекулярного вещества, представляет собой набор цепей, в случае, например, гомополимеров, имеющих одинаковую химическую структуру, но разную длину. Для гомополимеров этот набор количественно описывается функцией распределения по степеням полимеризации (или молекулярно-массовым распределением). Для гомологического ряда сополимеров одинакового среднего состава наблюдается также композиционная неоднородность М. (собственно неоднородность состава) и конфигурационная неоднородность (различное чередование звеньев разных типов). Будучи построенной из большого числа (от сотен до миллионов) элементарных звеньев, каждая отдельная М. представляет собой миниатюрный статистический ансамбль, подчиняющийся законам термодинамики малых систем и проявляющий такие свойства макроскопических физических тел, как изменчивость размеров (геометрических) и формы, не связанные с химическими превращениями.

  Последняя особенность связана с одним из главных свойств М. — их гибкостью, то есть способностью полимерных цепей изменять свою конформацию в результате внутримолекулярного, микроброунового теплового движения звеньев (в случае так называемой термодинамической гибкости) или же под влиянием внешних механических, в частности гидродинамических, факторов (кинетическая гибкость). Гибкость обусловлена возможностью вращения атомов цепи и звеньев в целом вокруг простых (одинарных) связей. Гибкость М. следует отличать от подвижности, которую ограничивают внешние факторы — взаимодействие с растворителем или соседними макромолекулярными цепями. Непосредственной мерой гибкости является величина потенциала торможения внутреннего вращения атомов и звеньев, который зависит от структуры повторяющихся звеньев и имеет квантовомеханическую природу.

  Термодинамическая гибкость М. определяется по их геометрическим размерам, стереохимическим и некоторым другим характеристикам. Основной стереохимической характеристикой М. является конфигурация — полное пространственное распределение атомов, образующих М., которое определяется длинами соответствующих связей и величинами валентных углов и не может быть изменено без разрыва химических связей. Как известно, при одной и той же общей конфигурации М. может принимать несколько конформаций; таким образом, конформация представляет собой переменную статистическую величину — она характеризует распределение в пространстве атомов и атомных групп при неизменных валентных углах, но переменных ориентациях связей. Изменение ориентации происходит вследствие относительных поворотов этих атомов и групп под действием теплового движения звеньев. В отсутствие взаимодействий с другими М. (например, в разбавленном растворе) вытянутая поначалу гипотетическая полимерная цепь в результате ряда элементарных поворотов приобретает конформацию так называемого статистического клубка. Размеры такого клубка выражаются, например, через среднеквадратичное расстояние между его концами. Сопоставление этих размеров с теми, которые М. приобрела бы при отсутствии торможения внутреннего вращения (они рассчитываются теоретически), позволяет оценить термодинамическую гибкость. Размеры М., необходимые для расчётов гибкости, могут быть найдены дифракционными или гидродинамическими методами, а некоторые конфигурационные характеристики — динамо- или электрооптическими (двойное лучепреломление в потоке, эффект Керра).

  В отличие от термодинамической, или равновесной, гибкости, кинетическая гибкость не является постоянной характеристикой М., а зависит от скорости внешнего деформирующего воздействия.

  Учесть влияние скорости воздействия на кинетическую гибкость М. можно, зная её релаксационный спектр (см. Релаксационные явления в полимерах). Между равновесной и кинетической гибкостью имеется определённая связь, ибо в конечном счёте обе эти характеристики определяются потенциалом торможения.

  С позиций статистической физики способность М. к деформациям можно характеризовать конформационным набором, который называется также статистическим весом (или конформационной энтропией). С уменьшением степени полимеризации уменьшается и число возможных конформаций. Относительно короткие М. олигомеров, или мультимеров, вообще почти не деформируемы, но лишь потому, что в них мало число звеньев, а потенциал торможения — конечная мера гибкости — тот же, что в длинных цепях. Статистическим весом можно характеризовать и конфигурацию, что становится вполне очевидным в случае сополимеров. Число возможных способов распределения разных звеньев вдоль цепи определяет конфигурационную энтропию М.; отрицательное значение этой величины представляет собой меру информации, которую может содержать М. Способность М. к хранению информации является одной из самых важных их характеристик, значимость которой стала понятна лишь после открытия генетического кода.

  С равновесной и кинетической гибкостью М. связаны уникальные механические свойства полимеров, в частности высокоэластичность (см. Высокоэластическое состояние). С конформационной энтропией полиэлектролитов и сополимеров связана возможность превращения химической энергии в механическую (см. Хемомеханика). С конфигурационной энтропией связана способность М. к образованию устойчивых вторичных молекулярных структур, достигающих высокой степени совершенства и обладающих специфическими свойствами в М. важнейших биополимеровбелков и нуклеиновых кислот. Применительно к биополимерам можно вместо конфигурационной энтропии пользоваться термином «конфигурационная информация», которая, в соответствии со сказанным выше, определяет единственность (то есть нестатистичность, в отличие от синтетических М.) конформаций белковых М., предопределяющую их способность быть ферментами, переносчиками кислорода и т. п. В синтетических сополимерах вторичные молекулярные структуры возникают вследствие избирательных взаимодействий определённым образом расположенных вдоль цепи звеньев разных типов; эти структуры лишь умеренно специфичны, но могут служить простейшими моделями запоминания на уровне М.

 

  Лит.: Волькенштейн М. В.. Конфигурационная статистика полимерных цепей, М. — Л., 1959; его же, Молекулы и жизнь, М., 1965; Цветков В. Н., Эскин В. Е., Френкель С. Я., Структура макромолекул в растворах, М., 1964; Моравец Г., Макромолекулы в растворе, перевод с английского, М., 1967; Бирштейн Т. М., Птицын О. Б., Конформации макромолекул, М., 1964; Флори П., Статистическая механика цепных молекул, перевод с английского, М., 1971; Френкель С. Я., Гибкость макромолекул, в книге: Энциклопедия полимеров, т. 1, М., 1972; Макромолекула, там же, т. 2, М., (в печати).

  С. Я. Френкель.