Параллельная ЭВМ — различия между версиями

Материал из ЭНЭ
Перейти к: навигация, поиск
м (Внутренняя сеть)
м (Источники: ссылку сделаем рабочей)
Строка 31: Строка 31:
 
== Источники ==
 
== Источники ==
 
* труды В.В. Воеводина и В.В. Воеводина (мл.).
 
* труды В.В. Воеводина и В.В. Воеводина (мл.).
* TOP500.org
+
* [http://top500.org/ TOP500.org — рейтинг и описание 500 самых мощных общественно известных вычислительных систем.]
  
 
[[category:параллельные вычисления]]
 
[[category:параллельные вычисления]]

Версия 12:38, 21 августа 2015

Параллельная вычислительная машина (система) нестрого определяется как система, в которой множественные вычисляющие узлы работают совместно над выполнением одной или многих задач – осуществляют параллельные вычисления. Эта модель отличается от фон-неймановской модели последовательной ЭВМ, в которой выполнение команд происходит лишь на одном вычисляющем-исполняющем узле (процессоре).

Основные варианты конструктивного исполнения: кластеры и массово-параллельные системы. Кроме того, по способу программной организации параллельной обработки выделяют классы Флинна.

Проблемы построения

Внутренняя сеть

Поскольку вычислительные устройства в составе параллельной ЭВМ (ПарВМ) работают совместно и, следовательно, должны обмениваться данными, важнейшей проблемой при построении ПарВМ является построение сети внутренней сети обмена данными, соединяющей устройства, а это, в свою очередь, означает оптимизацию таких параметров сети, как пропускная способность (т.наз. «скорость передачи»; throughput, bandwidth) и задержка начала поступления данных или задержка появления данных (т.наз. «латентность»; latency) линий связи между вычислительными устройствами – внутренней сети.

При построении внутренней сети простейшим способом, через локальные сети технологии Ethernet, главной проблемой является большое (до единиц миллисекунд) время задержки появления данных (high latency) у адресата при сравнительно высокой (сотни и тысячи мегабит в секунду) пропускной способности самого канала.

Данную проблему призваны решать специальные быстродействующие сети с малым временем задержки (SCI, Myrinet, Infiniband и др.). В таких сетях пропускная способность достигает десятков гигабит в секунду при задержке порядка единиц микросекунд. Однако это достигается за счёт усложнения конструкции связных устройств и повышения стоимости оборудования.

Охлаждение и климатизация

...

Энергопотребление

...

Производительность

Некоторые наиболее часто употребляемые характеристики параллельных ЭВМ:

Пиковая (теоретическая, номинальная) производительность, Rpeak – величина, получаемая простым умножением количества вычисляющих устройств (процессоров, ядер и т.д.) в системе на максимальное возможное число арифметических операций (флоп; Flop – floating point operation) с плавающей запятой, производимых вычисляющим устройством за один такт сигнала синхронизации, на число тактов в секунду.

Например, один процессор Intel Itanium 2, работающий с тактовой частотой 1,5 ГГц, способен производить 4 операции с плавающей запятой за один такт и, следовательно, обладает пиковой производительностью 6 Гфлоп/с; единицу флоп/с могут употреблять в виде «флопс».

Максимальная производительность, Rmax – показатель, связанный со временем исполнения образцовой программы («бенчмарк»). В мировом списке мощнейших параллельных систем TOP500 в качестве образцовой программы используется HPL benchmark, основанная на LINPACK).

Параметр Nmax (сопряжённый с максимальной производительностью): (максимальный) счётный размер (объём) задачи, при котором был получен определённый показатель Rmax.

Параметр Nhalf (N1/2): счётный размер (объём) задачи, для которой машина показывает половину максимальной производительности. Это хороший показатель качества внутренней сети: чем Nhalf меньше, тем лучше (соотношение 1/10 считается хорошим показателем).

Ю.Т.

Источники