Взрывчатые вещества
Взрывчатые вещества
— будучи при обыкновенных условиях более или менее постоянны, под влиянием накаливания, удара, трения и тому под. способны «взрывать», то есть быстро разлагаться, превращаясь в накаленные сжатые газы, стремящиеся занять большой объем. Происходящие газы, встречая преграды, производят на них давление, результатом чего являются: передача части живой силы взрыва частям преграды, перелом ее и измельчение, а иногда и отбрасывание с запасом живой силы частей, оказавших наименьшее сопротивление. Таким свойством взрывчатых веществ пользуются во множестве случаев, напр. при проведении туннелей, уничтожении подводных камней, выработке рудников, для движения механизмов (газовых двигателей), бросания ракет, стрельбы, действия мин при защите берегов и т. п.
Древние народы не знали взрывчатых веществ. Изучение их, начавшееся в XV столетии благодаря открытию пороха, бывшего ранее известным в Китае, имеет значение не только потому, что они оказывают множество услуг и часто сильно облегчают работу, действуя как молот, ударом, но даже и потому, что может предотвратить получение случайных взрывов и содействовать закономерному управлению силой взрывчатых веществ.
Предлагаемая статья содержит сведения: I) о составе взрывчатых веществ; II) о разложении их при взрыве; III) о скорости взрывов; IV) о детонации; V) об объеме газов; VI) о количестве отделяющегося при взрывах тепла; VII) о температуре при взрывах; VIII) о давлениях, развиваемых взрывчатыми веществами, и IX) о работе взрывчатых веществ[1].
I. Состав взрывчатых веществ
Между взрывчатыми веществами известны твердые, жидкие тела и газы; напр. обыкновенный порох - твердое тело, нитроглицерин - жидкость, смесь светильного газа с воздухом - газ.
1) Если смешать между собой по возможности однородно, в известной пропорции, с одной стороны, тела, легко выделяющие при нагревании кислород, и с другой - тела горючие, способные через соединение с кислородом давать тепло и газообразные продукты, то получатся так называемые взрывчатые смеси, которые могут быть весьма разнообразны.
Простейшая из таких смесей есть гремучий газ, составленный из 2 об. водорода и 1 об. кислорода; сообщение огня какой-либо точке этой смеси вызывает почти мгновенное ее сгорание, т. е. соединение взятых тел с образованием 2 об. водяного пара и отделением огромного количества тепла. Явление взрыва, наблюдаемое при воспламенении в закрытой оболочке, обусловливается собственно отделяющимся теплом: на счет его не только распространяется горение быстро от слоя к слою, но и происходит столь сильное нагревание водяного пара, что при взрыве в закрытой оболочке на стенки ее получается давление в 10 раз большее сравнительно с начальным давлением смеси. Так же точно содержится при зажигании смесь из 2 об. окиси углерода и 1 об. кислорода: она весьма быстро и с большим отделением тепла образует 2 об. углекислого газа, если его измерять после взрыва, приведя к начальной температуре и начальному давлению, при которых измерены начальные объемы. Вместо 1 об. кислорода на 2 об. водорода или на 2 об. окиси углерода можно было бы взять 4,8 об. воздуха, т. е. смеси из 1 об. кислорода и 3,8 азота, причем рядом с продуктами горения - водой и углекислотой - получился бы свободный азот, в сущности же произошли бы те же явления, хотя и с меньшей интенсивностью, вследствие затраты тепла на нагревание азота, не принимающего участия в самом горении. Но вода и углекислота образуются при горении всяких органических веществ, как содержащих углеводородные элементы, поэтому и смеси их паров с кислородом или воздухом должны содержаться подобно предыдущим. Действительно, газообразные углеводороды, напр. светильный газ, пары летучих соединений, напр. эфира, бензина и т. п., образуют с воздухом взрывчатые системы; так назыв. рудничный газ есть не что иное, как смесь болотного газа с воздухом. Пары сернистого углерода, брызги нефти, угольная и серная пыль, крупинки крахмала и т. п., смешанные с воздухом, также могут дать место взрывам. Если прибавим, что свободный кислород во многих из таких смесей может быть заменен газообразными химическими его соединениями, легко разлагающимися, напр. закисью азота, окисью азота и т. п., то разнообразие В. смесей газов еще увеличится; так, 2 об. водорода с 2 об. закиси азота, взрываясь, превращаются в 2 об. водяного пара и 2 об. азота; или 2 об. циана с 4 об. окиси азота дают при воспламенении 4 об. углекислоты и 2 об. азота. При искусственном образовании взрывчатых смесей стремятся, чтобы взятое количество кислорода или вещества, его содержащего, было достаточно для полного сжигания горючих элементов смеси, напр. водорода и углерода. Нахождение наивыгоднейшей пропорции смешения по объему делается, изображая состав участвующих в превращении тел химическими частичными формулами, а само превращение - уравнениями, так как относительные весовые количества тел, соответствующие таким формулам, занимают в газообразном состоянии при одинаковых температуре и давлении равные объемы, а именно в 2 раза больший объем, чем объем весовой единицы водорода, по отношению к которому выражаются веса всех частиц. Тогда уравнение, взятое так, чтобы весь водород превращался в воду, углерод в углекислый газ, сера в сернистый газ и т. п., прямо укажет, в какой именно пропорции следует произвести смешение; оно в то же время дает и объем продуктов горения.
Например:
Изображение взрывчатых превращений химическими равенствами представляет наглядно и многие другие их свойства, почему ими пользуются постоянно. Небольшое уклонение от наивыгоднейшей пропорции кислорода не уничтожает взрывчатости системы; оно только меняет состав продуктов, обусловливая появление в них или свободного кислорода (в случае его избытка), или продуктов неполного горения, напр. окиси углерода (в случае избытка горючего газа, содержащего углерод). Но, постепенно увеличивая уклонение как в одну, так и в другую сторону, мы дойдем до пределов, когда горение перестает распространяться само собой, и тогда явление взрыва не наблюдается; причина этого заключается в том, что при большом избытке одного из смешанных газов температура в слоях, окружающих место возбуждения горения, этим избытком сильно понижается и нагревание их не достигает точки воспламенения. Но все перечисленные газовые смеси не могут употребляться в роли собственно взрывчатых веществ по причине очень большого объема, занимаемого ими в обыкновенных условиях. Единственная, которая получила техническое применение, это - смесь светильного газа с воздухом, употребляемая для движения в газомоторах (см. Газовые двигатели).
Конечно, можно было бы газообразные В. смеси, способные легко принимать жидкое состояние, напр. этилен C 2H4 и закись азота N 2 O, посредством охлаждения и давления превратить в жидкие взрывчатые смешения, занимающие малый объем и подобные настоящим взрывчатым жидкостям; но проще взять как горючие, так и поддерживающие горение вещества, имеющие это состояние в обыкновенных условиях. Останавливаясь собственно на выборе жидкостей, поддерживающих горение, обращают на себя внимание главным образом две - азотноватый ангидрид NО 2, кипящий при 26°, и дымящаяся азотная кислота HNO 3, кипящая при 86°. И действительно, как с первым, так и с последним сжигающим деятелем может быть приготовлен ряд взрывчатых жидких смесей через растворение в них различных горючих соединений. Смешивая сернистый углерод CS 2, бензол С 6 Н 6 и т. п. с азотноватым ангидридом, получают панкластиты, открытые Турпеном, напр.:
- CS2 [cероуглерод] + 3NO2 [азотнов. ангидр.] = СО2 [углек. газ] + 2SO2 [сернис. газ] + 1,5N2 [азот].
Смешения дымящейся азотной кислоты с нитробензолом С6Н5NО2 и другими подобными соединениями представляют собой так наз. кислые взрывчатые вещества Шпренгеля:
- C6H5NO2 [нитробензол] + 5HNO3 [азотная кисл.] = 6СО2 [углек. газ] + 5H2O [вода] + 3N2 [азот].
При взрыве как тех, так и других имеет место не только выделение огромного количества тепла, но и большое увеличение объема системы; так, литр панкластита вышеприведенного состава весом около 1,28 кил. дает 601,6 литров газов при нормальных условиях. Но, кроме малого начального объема, эти смеси представляют преимущество, важное в технической практике, в том отношении, что могут легко приготовляться непосредственно перед самым взрывом из веществ невзрывчатых и потому безопасных при перевозке.
Представителем твердых взрывчатых смесей служит обыкновенный порох. Горючие элементы в нем сера S и уголь С; сжигающий деятель - калийная селитра KNO3. Смешение, рассчитанное на полное сгорание, отвечает частичному составу 10KNO3 + 3S + 8С. При сообщении огня селитра выделяет азот N и кислород О, оставляя окись калия К2 О; сера и уголь с кислородом превращаются в серный ангидрид SО3 и углекислоту СО2; окись калия, соединяясь с ними, дает твердые труднолетучие соли - сернокислую K2SO4 и углекислую K2СО3:
- 10KNO3 + 3S + 8С = 3K2SO4 + 2K2СО3 + 6CO2 + 5N2.
Но обыкновенно приготовляются сорта пороха с меньшим содержанием селитры, так как этим способом для единицы веса удается достигнуть увеличения объема газов, развивающихся при взрыве, а равно осуществить и некоторые другие задачи, важные при употреблении для стрельбы; напр. состав (приближенный) охотничьего сорта выражается формулой 16KNO3 + 6S + 13С, артиллерийского 2KNO3 + S + 3С; причем, понятно, в вышеозначенных продуктах взрыва должны появиться также вещества, не вполне окисленные, а именно: в газообразных - окись углерода СО, а в твердых - сернистый калий K2 S. Вместо калийной селитры можно взять другие азотнокислые соли, напр. NaNO3, NH4NO3, Ва(NO3)2 или бертолетову соль KСlO3 и хлорно-калиевую соль КСlO4. Кроме того, здесь могут применяться также марганцово-калиевая KМnО 4 и двухромовокалиевая соли K2Сr2О7, перекиси и другие подобные вещества, легко выделяющие при нагревании кислород. Вместо угля (или также и серы), с другой стороны, можно употреблять различные твердые органические тела, напр. клетчатку, крахмал C6H10O5, тростниковый сахар С12Н22О11, парафин СnН2n+2, нафталин С10 Н 8, уксусно-натриевую соль - NaC 2H3O2, синеродистые и железисто-синеродистые соли, напр. KCN, K4Fe(CN)6, Pb2Fe(CN)6, многие сернистые металлы, напр. CuS, Sb2S3 и др., так как все эти тела способны гореть в кислороде. Какую бы ни взяли смесь из перечисленных тел, везде получим в большей или меньшей мере В. вещества, потому что везде будут присутствовать тела, легко выделяющие много кислорода, и тела, дающие при своем горении газы. И в самом деле, в различное время было предложено много разнообразных смешений, подобных обыкновенному пороху, напр. саксифрагин - из Ва(NO3)2 (с незначительной примесью KNO3) и С; амидный порох - из NH4NO3, KNO3 и С; галлоксилин - из KNO3, С, древесных опилок и K4Ее(СN)6; порох Ожандра - из КСlO3, K4Fe(CN)6 и C12H22O11 и т. п. Замена одних составных частей другими одинакового значения, хотя бы и в соответствующей пропорции, влечет за собой изменение в объеме газов и в количестве тепла. Возьмем, напр., вместо калийной селитры эквивалентные количества (т. е. выделяющие то же количество кислорода) других азотнокислых солей, при чем газообразные продукты взрыва получатся сходственные и при одном и том же количестве угля и серы ни объем газов, ни количество тепла приблизительно не изменятся. Но, если делать расчет на единицу веса пороха, влияние эквивалентов сжигающих деятелей тотчас выступает на первый план. Пусть замена сделана на Ba(NO3)2: так как эквивалент (частичный вес) KNO3 есть 101, а эквивалент Ва(NO3)2 (половина частичного веса) 130,5, то поэтому на одно и то же количество серы и угля для образования сходственных продуктов горения придется взять Ba(NO3)2 на 1/3 более, т е. общий вес новой смеси будет больше, а следовательно, единица веса ее даст и газов, и тепла меньше. Обратное получится при замене KNO3 на NaNO3, потому что эквивалент последней соли менее, а именно равен только 85, т. е. единица веса смеси с NaNO3 выделит и тепла, и газов больше. Пусть, далее, вместо KNO3 употреблена азотнокислая соль меди Сu(NО3)2: в то время как KNO3, NaNO3, Ba(NO3)2 превращаются при взрыве в K2O, Na2O, ВаО, образующие с СО2 и SО3 прочные соли, Cu(NO3)2 дает чистую медь, т. е. производит сжигание не только кислородом элементов азотной кислоты, но и кислородом, соединенным с самой медью; а следовательно, с KNO3 будут эквивалентны 5/12Cu(NO3)2, или эквивалент этой соли в пороховых смесях равен 78, и с рассматриваемой точки зрения она еще выгоднее, чем NaNO 3. Но так как пороха с NaNO3 и Cu(NO3)2 гигроскопичны, то они и непригодны для дела.
2) Во взрывчатых смесях частицы тел горючих и тел, поддерживающих горение, существуют отдельно; оттого при образовании наиболее типических из них (газовых и твердых) обыкновенно не наблюдается никаких внешних явлений, указывающих на внутренние частичные работы; оттого же в твердых смесях, где частицы не обладают подвижностью, никогда нельзя достигнуть совершенной однородности состава. Но можно представить, что элементы горючие и сжигающий кислород (в достаточной пропорции) совмещены в одной и той же химической частице - в однородном химическом соединении; таковы, например, азотно-аммиачная соль NH4NO3, щавелевокислые соли серебра Ag 2C2O4 и ртути HgC2O4, хлорнокислый СН3СlO4 и азотнокислый метил СН3NО3 и т. п. Все подобные соединения, обладая сравнительно малой устойчивостью, при сообщении огня стремятся превратиться в систему тел наиболее прочных, каковыми являются СО2, СО, H2O, HCl, N2, т. е. дают место как бы внутричастичному сгоранию, напр.:
- NH4NO3 = 2Н2О + N2 + О;
- Ag2C2O4 = 2СО2 + 2Ag и пр.
Примечания
- ↑ [О применении взрывчатых веществ, кроме статей о пушках, ружьях, минах и т. п. военных приспособлениях, в «Энциклопедическом словаре» говорится в статьях: Взрывные работы (туннелей и т. п.), Газовые двигатели, Горное дело, Соль, Запалы, Патроны и друг. Нельзя не упомянуть о том, что с 1891 г. взрывчатые вещества обещают получить на основании американских опытов новое приложение — для вызова дождя. Предмет этот доныне еще вовсе не обследован, писать о нем еще нельзя ни в утвердительном, ни в отрицательном смысле; но не существует, по мнению моему, никакой невозможности в вызове дождя при помощи взрывов, произведенных на некоторой высоте в атмосфере, потому что взрывы производят волны сгущения и разрежения, причем в поясе разрежения могут получаться из влаги воздуха дождевые осадки и происходить такие смешения слоев воздуха, имеющих различную температуру и относительную влажность, что достигается точка росы и, следовательно, наступают известные условия для образования дождевого осаждения. Известно, что в сухом сосуде (напр. графине), содержащем обыкновенный влажный воздух, при быстром разрежении воздуха (напр. ртом, плотно прижав губы) происходит туман и что громовые тучи часто выливают такое количество воды, которое, несомненно, не могло содержаться в туче, а происходит от сжижения влаги, находящейся в воздухе и близкой к точке росы, то есть туча несет условия дождеобразования, а не саму массу выливающейся воды, как проследил, напр., Мон в грозах Норвегии (см. «Метеорология» Мона). Нельзя также отрицать возможности происхождения электрической энергии при взрывах и участия этой энергии в образовании дождя. Соображения этого рода допускают возможность вызова взрывами дождя при известном сочетании благоприятных условий, но предмет этот, как и все явления дoждeoбpaзoвaния, еще требует многих научных работ, направленных в сторону покорения действующих здесь сил природы на службу человечеству. Если В. вещества помогут в этой победе, как помогают они уже ныне преодолевать твердыню горных хребтов, то они, как сталь уже ныне, в будущем послужат на такую пользу, что искупят ту массу зла, которая совершалась не раз при посредстве В. веществ. Предлагаемая читателям «Энциклопедического словаря» статья проф. Ив. Мих. Чельцова покажет, что научное знание взрывчатых веществ подвинулось за последнее время весьма значительно вперед, а это дает полную уверенность в том, что полезные применения В. веществ станут возрастать на службу достижения возможного общего мирного благополучия. — Д. Менделеев.]
- В статье воспроизведен материал из Большого энциклопедического словаря Брокгауза и Ефрона.